
December 6th, 2020
NeurIPS Netflix presentations

Benoit Rostykus

Machine Learning
for Systems
A peek for researchers



ML for systems



Your host today
● Senior Machine Learning Researcher
● Current focus: make Netflix container platform smarter

● In the past:
○ retention modeling, causality
○ large-scale convex optimization
○ Low-latency computation

● Love production systems & constrained environments

“Necessity is the mother of invention”



Teaser: did you know?
A perceptron has likely been hiding deep inside your CPU for a while

BPU: Branch Prediction Unit
● Silicon predicting which branch will execute in an “if” statement
● Very important

○ for performance, CPUs do speculative execution
○ instructions execution is pipelined

● Typical misprediction rate: 1-10 mispredictions per 1k instructions
● Typical misprediction cost: 20 cycles

Some advanced branch predictors have “mini linear models” printed in silicon

(Confirmed in AMD Zen and Samsung M1 microarchitectures)



Agenda
● Why you should care
● Selected Netflix problems

○ Noisy neighbors
○ Oversubscription

● A wide space



Why you should care
Most of the systems you interact with as a researcher are heuristics-driven:
● Operating System
● Compiler
● Garbage collector
● Cloud scheduler (Spark...)
● Database

ML is good at automating heuristics with data
Relatively new field when applied to systems



Selected Problem: noisy neighbors
● Levels of caches (L1, L2, LLC…) are usually shared across CPUs
● Creates interference: more or less cache misses depending on access patterns 
● Degrades software performance in colocated environments
● Linux task scheduler (CFS) suboptimal

Problem is combinatorial, stateful, dynamic



Selected Problem: noisy neighbors

Noisy Neighbors

from automatic second-granularity Performance Monitoring Counters data collection



Selected Problem: noisy neighbors
Implemented a user-space solution based on combinatorial 
optimization

● Every ~10-60s, each host runs a Mixed Integer Program to 
map its running containers to its CPUs

● Goal: minimize cache misses

AB test results:
● Improved tail latency of critical Netflix services by 30%
● Decreased long-running batch jobs outliers



Selected Problem: oversubscription
Facts:
● Cloud resources are underutilized
● Manual right-sizing doesn’t scale

○ resource utilization is variable over time
○ developers should focus on app logic 
○ developers ask for more than what they need

● VM auto scaling is slow/not granular enough

Opportunity: decide when and where to run containers

Goal: learn software execution behavior to automate scheduling, sizing and placement



Selected Problem: oversubscription

Some predictive tasks:
● Runtime duration of batch jobs
● Cpu, memory, disk, network usage of containers

Techniques and challenges:
● Non-Gaussian behaviors

○ Underestimating is worse than overestimating
○ Outliers drive perceived performance

● Model distribution tails through large-scale conditional quantiles regression
● Time series prediction
● Delayed scheduling: when to launch?

○ Model Predictive Control

Predictive models integrated inside platforms such as Kubernetes to drive scheduling decisions

predicted 
quantiles



A wide space

There’s an ∞ number of problems to solve
and an ε number of people on it

here is a non-exhaustive selection of interesting ones….



Compilation
Profile Guided Optimization (PGO)
1) Instrument code execution to collect tracing data
2) Run code
3) Re-compile, leverage traces to make better heuristics decisions 

=> Basic “learn to compile” data loop

Some examples:
● RL-driven inliner in LLVM
● AutoFDO
● Windows reports 5-20% performance improvements
● Chrome reports 10% faster page load



Heterogeneity creates opportunities

“The only path left to improve energy-performance-cost is specialization. 
Future microprocessors will include several domain-specific cores that perform 
only one class of computations well, but they do so remarkably better than 
general-purpose cores”
Computer Architecture: A Quantitative Approach (6th ed.) - JL Hennessy, DA Patterson

Moore’s Law stopped around 2000-2005

Free lunch is over.
● 2000-2015: increase parallelism (multi-cores)
● 2015-now: increase specialization

Both approaches:
● require more work from software engineers
● can benefit from ML



Heterogeneity creates opportunities
On chip

example: Apple M1 SoC (Nov. 2020) ● 4 “high perf” cores
● 4 “high efficiency” cores
● 8-core GPU
● 16-core Neural Engine
● Unified Memory

Some problems:
● Scheduling across heterogeneous units

○ Compile time? JIT? On-chip controller?
● Caching algorithms
● Optimize for:

○ Throughput?
○ Latency?
○ Power efficiency?
○ Schedulability?



Heterogeneity creates opportunities
In the datacenter
● Complex dependency graph between:

○ services
○ data
○ batch jobs

● Multitude of constraints per application
○ SLA, hardware needs...

● Infinite service offering from cloud providers
○ 315 aws ec2 instance types as of Nov 11

Scheduling:
● Minimize cloud bill?
● Minimize time to completion?
● Maximize “performance”?
● Minimize hardware availability risk?

“Learn to schedule”
host A host B

container 1 container 2 container 3

space 
x time



Memory: a leaky abstraction
Memory is a leaky concept
● Cache hierarchy
● NUMA domains
● Memory ordering
● Accelerators (such as GPU) memory
● DMA and RDMA

Programs, operating systems and distributed systems make assumptions on how 
memory is accessed.

Idea: learn memory access. Already applied to:
● prefetching
● allocators
● data structures
● ...



Operating System
Trend: more powerful kernel APIs for user-space extensibility/control
● cgroups v2
● eBPF

Doing more user-space allows for ML-driven approaches to:
● replace kernel heuristics
● Auto-tune the OS at runtime for a given application

Cooperative multitasking (userland, Goroutines) vs preemptive multitasking (threads)



Parting thought

Data-driven compilation, planning & 
execution of software will increase in 

importance

ML will be at the center of it



Thank you! 



Bibliography
● Erven Rohou, Bharath Narasimha Swamy, André Seznec. Branch Prediction and the 

Performance of Interpreters - Don’t Trust Folklore. International Symposium on Code 
Generation and Optimization, Feb 2015, Burlingame, United States. Ffhal-01100647f

● Troffin M. RFC: a practical mechanism for applying Machine Learning for optimization policies 
in LLVM. LLVM mailing list, April 2020

● Haj-Ali, A., Ahmed, N.K., Willke, T., Shao, S., Asanovic, K. and Stoica, I., 2019, December. 
Learning to vectorize using deep reinforcement learning. In Workshop on ML for Systems at 
NeurIPS.

● Hashemi, M., Swersky, K., Smith, J.A., Ayers, G., Litz, H., Chang, J., Kozyrakis, C. and 
Ranganathan, P., 2018. Learning memory access patterns. arXiv preprint arXiv:1803.02329.

● Chen, D., Moseley, T. and Li, D.X., 2016, March. AutoFDO: Automatic feedback-directed 
optimization for warehouse-scale applications. In 2016 IEEE/ACM International Symposium on 
Code Generation and Optimization (CGO) (pp. 12-23). IEEE.

● Bearman, I. Exploring Profile Guided Optimization of the Linux Kernel. Linux Plumbers 
Conference, 2020

● Christoff M. Chrome just got faster with Profile Guided Optimization. Chromium Blog, 2020
● Kraska, T., Beutel, A., Chi, E.H., Dean, J. and Polyzotis, N., 2018, May. The case for learned 

index structures. In Proceedings of the 2018 International Conference on Management of Data 
(pp. 489-504).


