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Your host today

e Senior Machine Learning Researcher
e Current focus: make Netflix container platform smarter

e Inthe past:
o retention modeling, causality
o large-scale convex optimization
o Low-latency computation

e Love production systems & constrained environments

“Necessity is the mother of invention”




Teaser: did you know?

A perceptron has likely been hiding deep inside your CPU for a while

BPU: Branch Prediction Unit
e Silicon predicting which branch will execute in an “if” statement
e Veryimportant
o for performance, CPUs do speculative execution
o instructions execution is pipelined
e Typical misprediction rate: 1-10 mispredictions per 1k instructions
e Typical misprediction cost: 20 cycles

Some advanced branch predictors have “mini linear models” printed in silicon

(Confirmed in AMD Zen and Samsung M1 microarchitectures)



Agenda

e \Why you should care

e Selected Netflix problems
o Noisy neighbors
o Qversubscription

e A wide space




Why you should care

Most of the systems you interact with as a researcher are heuristics-driven:
Operating System

Compiler

Garbage collector

Cloud scheduler (Spark...)

Database

ML is good at automating heuristics with data
Relatively new field when applied to systems




Selected Problem: noisy neighbors

Levels of caches (L1, L2, LLC...) are usually shared across CPUs

Creates interference: more or less cache misses depending on access patterns
Degrades software performance in colocated environments

Linux task scheduler (CFS) suboptimal

Problem is combinatorial, stateful, dynamic
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Selected Problem: noisy neighbors

Implemented a user-space solution based on combinatorial
optimization

e FEvery ~10-60s, each host runs a Mixed Integer Program to
map its running containers to its CPUs
e Goal: minimize cache misses

AB test results:
e Improved tail latency of critical Netflix services by 30%
e Decreased long-running batch jobs outliers




Selected Problem: oversubscription

Facts: VvCPUs requested: 4
e Cloud resources are underutilized ) | |
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Opportunity: decide when and where to run containers

Goal: learn software execution behavior to automate scheduling, sizing and placement




Selected Problem: oversubscription

Some predictive tasks:
e Runtime duration of batch jobs

e Cpu, memory, disk, network usage of containers '
P e ; I I |ﬁ///,
Techniques and challenges: =\  predicted
e Non-Gaussian behaviors § quantiles

o Underestimating is worse than overestimating

o Outliers drive perceived performance
e Model distribution tails through large-scale conditional quantiles regression
e Time series prediction
e Delayed scheduling: when to launch?

o Model Predictive Control

Predictive models integrated inside platforms such as Kubernetes to drive scheduling decisions




A wide space

There’s an ®© number of problems to solve
and an € number of people on it

here is a non-exhaustive selection of interesting ones....




Compilation

Profile Guided Optimization (PGO)

1) Instrument code execution to collect tracing data

2) Runcode

3) Re-compile, leverage traces to make better heuristics decisions
=> Basic “learn to compile” data loop

Some examples:
e RL-driveninlinerin LLVM
e AutoFDO
e Windows reports 5-20% performance improvements
e Chrome reports 10% faster page load




Heterogeneity creates opportunities

Moore’s Law stopped around 2000-2005

Free lunch is over.
e 2000-2015: increase parallelism (multi-cores)

e 2015-now: increase specialization

Both approaches:
e require more work from software engineers

e can benefit from ML

“The only path left to improve energy-performance-cost is specialization.
Future microprocessors will include several domain-specific cores that perform

only one class of computations well, but they do so remarkably better than

general-purpose cores”
Computer Architecture: A Quantitative Approach (6th ed.) - JL Hennessy, DA Patterson




Heterogeneity creates opportunities

On chip

4 “high perf” cores

4 “high efficiency” cores
8-core GPU

16-core Neural Engine
Unified Memory

example: Apple M1 SoC (Nov. 2020)

Some problems:
e Scheduling across heterogeneous units
o Compile time? JIT? On-chip controller?
e (Caching algorithms
e Optimize for:
o  Throughput?
o Latency?
o Power efficiency?
o  Schedulability?




Heterogeneity creates opportunities

In the datacenter i’if’,,ii
e Complex dependency graph between:
o services
o data
o batch jobs
e Multitude of constraints per application container 1. container 2 container 3
o SLA, hardware needs... Liiil | 1|

e Infinite service offering from cloud providers

o 315 aws ec2 instance types as of Nov 11 M
Scheduling:

e Minimize cloud bill?

e Minimize time to completion?

e Maximize “performance”?

e Minimize hardware availability risk?

“Learn to schedule”

host A host B



Memory: a leaky abstraction

Memory is a leaky concept

Cache hierarchy

NUMA domains

Memory ordering

Accelerators (such as GPU) memory
DMA and RDMA

Programs, operating systems and distributed systems make assumptions on how
memory is accessed.

Idea: learn memory access. Already applied to:
e prefetching
e allocators
e data structures
[ ]




Operating System

Trend: more powerful kernel APIs for user-space extensibility/control
e cgroupsv2
e eBPF

Doing more user-space allows for ML-driven approaches to:

e replace kernel heuristics
e Auto-tune the OS at runtime for a given application

Cooperative multitasking (userland, Goroutines) vs preemptive multitasking (threads)




Parting thought

Data-driven compilation, planning &
execution of software will increase in
importance

ML will be at the center of it




Thank youl!

NETFLIX
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