
Large-Scale Causal Learning

Tony Jebara, Benoit Rostykus

{tjebara,brostykus}@netflix.com

October 31, 2017

Abstract

We augment causal learning under instrumental variables (IVs) with
computational improvements to allow it to scale to large datasets that
are typical in modern machine learning. While traditional IV implemen-
tations involve linear algebraic operations that have cubic scaling in the
dimensions of interest, we achieve linear scalability across 1) the number
of samples, 2) the number of non-zero elements of the features, and 3)
the number of non-zero elements of the instruments. This is achieved by
reformulating IV projections as a single joint optimization over model pa-
rameters and performing what we call pairwise stochastic gradient descent.
We note that standard stochastic gradient descent fails to achieve mean-
ingful speedup and scalability. We instead propose a pairwise stochastic
gradient descent scheme endowed with importance sampling methods and
implementation subtleties that provide significantly better computational
efficiency (in time and memory). The method is also straightforward to ex-
tend to non-linear settings (through neuronal models or kernel methods).
We demonstrate dramatic computational improvements on a large-scale
synthetic dataset as well as on a real-world dataset.

1 Introduction

Causal learning has a long history with techniques such as instrumental vari-
ables (IVs) and two-stage least squares (2SLS) dating back to the early 20th
century (Wright 1928). While such methods enjoy widespread use in the Eco-
nomics literature (Gujarati and Porter 2009), the computational scalability of
traditional causal IV methods is limited and is an impediment to their adoption
in machine learning.

Standard supervised machine learning recovers a function f that predicts
an output y from an input x after learning from iid samples. However, this
approach can fail when the system under consideration contains endogeneity.
Endogeneity emerges due to confounders, missing variable bias, simultaneity
(e.g. a variable y depends on x but x also depends on y), non-random non-
compliance and so on. For instance, consider an application in marketing where
a health insurance company is attempting to attract subscribers by showing
display ads on the internet. The company sees if a user (cookie) i has been
shown an ad, xi = 1 or not xi = 0. The company also sees that if user i signed
up with yi = 1 or has not signed up with yi = 0. By doing a simple linear

1

regression of y on x, the company infers that users who see their ad are twice
as likely to sign up for health insurance than users who signup organically (e.g.
by hearing about the opportunity from their friends or through other channels).
In other words, by sending ads, the company is causing people to sign up for
health insurance and that x is causing y. However, in reality this estimate is
severely biased because of a confounder: the time of day. During the daytime,
users are more actively browsing on the internet, are more likely to see ads
and, therefore, more likely to visit the company’s website. Thus, time of day is
another variable e which is a parent of both x and y. It is quite possible that
there is no causal effect of advertising and that the entire behavior can simply
be explained by e causing increases in x and y simultaneously.

One way to resolve this problem is to consider an instrumental variable z.
If z causes a change in x but is independent of e and somehow this change in x
also triggers a change in y then we 2-stage estimation methods can isolate the
causal effect of x on y. For instance, the company may have a random variable
z which suppresses some ads on some users half of the time. Then, it is possible
to change x in a manner that is independent of e and then infer the causal effect
from x to y. One framework for this is two-stage least squares (James and Singh
1978).

Two-stage least squares (2SLS) first tries to predict x from z, for instance
by learning a linear regression. Call the prediction x̂. Second, it learns how to
predict y from x̂ using another linear regression. Unfortunately, in large-scale
machine learning settings, the number of samples and the dimensionalities at
hand are both large. The feature space where x resides may be extremely high-
dimensional, e.g. with dimension dX . We may also have a high dimensional
vector for each observation z which resides in dZ dimensional space. Finally,
the number of samples we need to consider n may also be large. Therefore, we
must learn dX scalar regressions from a dZ-dimensional input space. If exact
linear-algebraic methods are used to perform 2SLS, we expect a runtime of
O(dX min(n3, d3Z)) for the first stage and O(min(n3, d3X)) for the second stage.
Essentially, this scales the computation required by dX relative to a standard
ordinary least squares (OLS) problem.

In this article, we propose a method to circumvent this scaling and to learn
2SLS with stochastic gradient techniques. We are therefore able to scale linearly
and handle problems that are both high-dimensional and involve a large number
of samples. In fact, we will scale linearly with the number of non-sparse elements
of the high dimensional feature vectors and instrumental variable vectors.

2 The 2SLS problem as a single optimization

In the 2SLS problem setup, we are given a data-set consisting of feature vectors
xi ∈ RdX , instrumental variable vectors zi ∈ RdZ and output scalars yi for
i = 1, . . . , n. We may also be given scalar weights w1, . . . , wn that indicate the
relative important of some samples over others in the data-set (such scalars can
capture Bayesian bootstrap weighting, negative class subsampling, etc.).

The goal of 2SLS is to learn a linear causal relationship between the input
feature vectors xi and the output yi of the form y = θ>x+noise (we omit the bias
here for simplicity since it can be obtained simply by concatenating a 1 to each
feature vector). The approach first learns to reconstruct each dimension d =

2

1, . . . , dX of xi from the feature vector zi by learning projection vectors πd ∈ RdZ
such that x(d) = π>d z+ noise. By performing linear least-squares, we learn the
projection vectors π̂1, . . . , π̂dX . Subsequently, given the projections, we obtain
reconstructed feature vectors x̂1, . . . , x̂n by computing x̂i(d) = π>d zi. Finally,

given the reconstructions, we recover the desired relationship θ̂ by performing
linear least squares to predict yi from x̂i.

Consider matrix representations of the 2SLS data-set:

• a matrix of features X of size (n, dX) and of sparsity ratio sX (i.e each
row has an average of sXdX non-zeros)

• a matrix of instruments Z of size (n, dZ) and of sparsity ratio sZ

• a response matrix Y of size (n, 1)

• a diagonal matrix W of size (n, n) where wi is an arbitrary weight associ-
ated with row i.

The 2SLS problem (also known as IV regression) can be then written in the
following closed-form formula (here we assume W = I for compactness):

θ̂ =
(
X>Z(Z>Z)−1Z>X

)−1
X>Z(Z>Z)−1ZY. (1)

It is straightforward to show that the above condition is equivalent to

θ̂ = arg min
θ
E(θ)>ZZ>E(θ) (2)

where θ ∈ RdX is the vector of parameters to be estimated and E(θ)i = yi−θ>xi
are the residuals. In the case of W 6= I, we have the following slightly more
general formula

θ̂ = arg min
θ
E(θ)>WZZ>WE(θ) (3)

Note that one can view this problem as a standard weighted Ordinary Least
Squares (OLS) problem where one would minimize E>E except that we’re using
a different norm than the Euclidian norm: we’re using the instruments Z to
build a positive symmetric matrix ZZtop. Of course, the matrix ZZ> is of
size n× n which makes its evaluation (and inversion in Equation 1) completely
impractical.

We are interested in solving (3) in an efficient manner when n, dX and dZ are
very large (potentially multiple millions) and sX and sZ are small (very sparse
matrices). If we want perfect scalability, we need the computational solution of
(3) to have a complexity linear in n, linear in sXdX and linear in sZdZ . We will
next explore a stochastic gradient descent approach to this problem.

3 Stochastic gradient descent approach

We now present a solution achieving this linear complexity. (3) can be explicitly
written as finding θ minimizing the convex loss L(θ):

L(θ) =

dZ∑
m=1

(
n∑
i=1

wizi,m
(
yi − θ>xi

))2

(4)

3

L(θ) =

n∑
i=1

n∑
j=1

[
wiwj

(
yi − θ>xi

) (
yj − θ>xj

) dZ∑
m=1

zi,mzj,m

]
(5)

L(θ) =

n∑
i=1

n∑
j=1

`i,j(θ) (6)

We see that we can sample (i, j) pairs and take a stochastic step in the
direction of ∇`i,j(θ) as this is an unbiased estimate of the true gradient:

E [∇`i,j(θ)] = ∇L(θ) (7)

Notice that ∇`i,j(θ) is sparse with respect to both the X and Z matrices, so we
achieve the linear scaling we wanted with respect to X and Z sparsity patterns.

3.1 Faster sampling

In stochastic SGD, we should not be sampling (i, j) pairs uniformly since it will
take O(n2) samples in the worst case to approximate this sum. Now, view the
problem as a weighted version of the form

L(θ) =

n∑
i=1

n∑
j=1

(yi − θ>xi)(yj − θ>xj)Kij

where Kij = wiwj
∑dZ
m=1 zi,mzj,m. Since all the zi,m are non-negative instru-

mental variables (or can we made as such without any loss of generality), we
can view this as an expectation over some distribution

L(θ) ∝
n∑
i=1

n∑
j=1

(yi − θ>xi)(yj − θ>xj)p(i, j)

where p(i, j) ∝ Kij . We can then decompose this distribution as

p(i, j) =

dZ∑
m=1

p(i|m)p(j|m)p(m)

where
p(i|m) =

wizi,m∑n
k=1 wkzk,m

and equivalently

p(j|m) =
wjzj,m∑n
k=1 wkzk,m

and

p(m) =
(
∑n
i=1 wizi,m)2∑Zd

n=1(
∑n
i=1 wizi,n)2

It is easy to verify that this is proportional to Kij . Therefore, to sample from
p(i, j), we should just sample an mt from p(m), then sample an it from p(i|mt)
and sample a jt from p(j|mt) for samples t = 1, . . . , T . The pairs (it, jt) are a

4

much more efficient way (and exact way) of sampling from p(i, j). Then, the
objective function is simply

L(θ) ≈ 1

T

>∑
t=1

(yit − θ>xit)(yjt − θ>xjt)

Thus, for SGD, we should update with a single sample t at a time. This will be
more efficient than sampling (i, j) uniformly.

3.2 A further speedup

We offered a pairwise SGD scheme for the IV regression problem. We now look
at row-wise variant. Rewrite the loss function using the trick above as

L(θ) ∝
n∑
i=1

n∑
j=1

(yi − θ>xi)(yj − θ>xj)
dZ∑
m=1

p(i|m)p(j|m)p(m).

Rearrange

L(θ) ∝
dZ∑
m=1

p(m)

n∑
i=1

n∑
j=1

(yi − θ>xi)p(i|m)(yj − θ>xj)p(j|m).

Defining the scalar error terms εm(θ) =
∑
i p(i|m)yi − θ>

∑
i p(i|m)xi for m =

1, . . . , dZ one can show that the gradient of the above is:

∇L(θ) ∝
dZ∑
m=1

p(m)εm(θ)

(
−

n∑
i=1

p(i|m)xi

)
.

To get a stochastic version of the gradient, sample mt according to p(m) and
sample it according to p(i|mt). Then perform the following update

θ ← θ + ηεmt(θ)xit . (8)

This update will cost O(sXdX).
We also need to update εm(θ) ∀m ∈ [0, dZ]. We write:

εm(θ) = Km − θ>Tm

With Km =
∑
i p(i|m)yi which can be stored in O(dZ) and Tm =

∑
i p(i|m)xi

which can be stored in O(dX × dZ).
Note that (8) means that we need to update all the εm with:

εm(θt+1) = εm(θt)
[
1− ηtx>itTm

]
This is expensive in a sparse setting, because it implies a scaling with dZ with
every stochastic step, which we want to avoid. Instead, we propose the following
approximation scheme: we only update the single εm with m = mt with the
following formula:

εmt
(θt+1) = εmt

(θt)|1− ηtx>itTm|
p(mt)

−1

sgn
(
1− ηtx>itTm

)
The idea being that we keep the expectation of the multiplicative update of all
the εm, but only update the single current εmt

.

5

3.3 Nonlinear and deep models

There is nothing preventing us from generalizing the framework so that we have
non-linear and deep mappings rather than just θ>x. We can simply do gradient
descent of the loss

L(θ) =

n∑
i=1

n∑
j=1

(yi − f(xi; θ))(yj − f(xj ; θ))Kij

for any nonlinear function f(xi; θ) we can parametrize by θ (e.g. a deep neural
network). We still would do stochastic gradient descent by sampling as in the
above framework and minimizing

L(θ) ≈ 1

T

>∑
t=1

(yit − f(xit ; θ))(yjt − f(xjt ; θ)).

Contrary to the first-stage procedure of the recently proposed DeepIV algorithm
(Hartford et al. 2017) which scales with the total dimensionality dX of the
treatment variables irrespective of their sparsity, our single-step SGD solution
leverages this sparsity to offer a tractable solution for neural-network based
causal regression in a large-dimensional sparse setting.

3.4 Memory complexity of efficient sampling

In order to sample according to p(m), we can just store in memory the CDF
of p(m), which requires to store dZ variables in memory and can be efficiently
computed with a single pass over the data.
Efficiently sampling according to p(i|m) is more challenging. The naive approach
is to order the training set by wizi,m for each instrumental variable m so that
one can build the CDF (i|m). This scales with the sparsity of Z, but requires
to be able to store Z in memory to efficiently draw from P (i|m).
Overall, the naive solution requires to store in memory something in the order
of Z which can be prohibitive.
If one cannot store Z in memory, we can use distribution sketching to store
limited information that will give us approximate draws from P (i|m). One idea
is to approximate q quantiles of P (i|m) for each m so that one keeps an optimal
amount of information per instrument under fixed memory constraint. Keeping
this sketch in memory, we can then run out-of-core SGD learning by sequentially
reading the data from disk (which is a lot more efficient than random sampling
with replacement) and use IPS-reweighting of the original likelihood based on
our estimated importance P̂ (i|m).

4 L-BFGS solution

Since L is strictly convex in the case of a linear model (provided the addition
of an L2 regularization on the parameters), we can use a quasi-Newton solver
such as L-BFGS to minimize it.
The full gradient of (4) is:

∂

∂θk
L = −2

dZ∑
m=1

(
n∑
i=1

wizi,mx
k
i

)(
n∑
i=1

wizi,m(yi − θ>xi)

)
(9)

6

∂

∂θk
L = −2

dZ∑
m=1

U(m, k)Vm(θ) (10)

We note that Vm(θ) can be computed with a single pass over the data and
respects the sparsity of X.
U(m, k) is independent of the parameters to be optimized and hence can be
pre-computed. It is easy to see that we can pre-compute U with a single pass
over the data while respecting the sparsity of both Z and X. However in all
generality it requires quadratic storage dZ × dX .
So an L-BFGS solution to (4) can be implemented with a CPU complexity
proportional to the sparsity of both X and Z.

5 Experiments

We demonstrate the efficiency of our method on a large-scale synthetic problem
as well as on a real-world dataset.
For the synthetic data, we will consider the following generative model for Z:

Z = (B1 ⊗N)× (Idz +B2)

where:
B1 is an n× dz random Bernoulli B(p1) matrix
N is an n× dz random Gaussian N (0, I) matrix
B2 is an dz × dz random Bernoulli B(p2) matrix
⊗ is the Hadamard product

This design allows us to efficiently draw large sparse Z matrices which have
a sparsity controlled by p1 and p2, while p2 controls the amount of correlation
between the instruments. We choose X to be:

X = γ1 × Z + (1− γ1)B3

where B3 is an n × dz random Bernoulli B(p3) matrix and γ1 ∈ [0, 1] controls
the strength of the instruments. Finally for all i ∈ [0, n]:

yi = θ>truthXi + ρεi

εi = (γ2Zi + (1− γ2)Hi)
>
1

with Hi a random Gaussian N (0, 1) vector of Rdz and (ρ, γ2) ∈ [0, 1]
2
.

With this setup, ρ controls the overall amount of noise while γ2 controls the level
of endogeneity. θtruth is the ground-truth vector of parameters to be recovered.

Since a 2SLS solver is impractical at large scale, we compare our method
against the L-BFGS solution described earlier. Because the L-BFGS solu-
tion to IV regression requires dX × dZ dense memory storage on top of the
rank-k approximation of inverse Hessian, we limit ourself to a relatively small
dX = dZ = 1000 setting, with n = 1e6 and sX = 1.5%, sZ = 1%. We choose
a small level of endogeneity γ2 = 5% and relatively good instruments γ1 = 0.5.
All SGD schemes use an AdaGrad schedule. Results are reported in figure (1).

7

Figure 1: Convergence speed of the proposed methods

We also report in figure (1) the performance of our method on a real-world
proprietary marketing dataset, related to causal estimation of ad effectiveness.
In this context, we’re trying to recover the causal expected ROI of an ad as a
function of ad, inventory and user attributes all embedded in a high-dimensional
sparse space. This dataset has the following characteristics n = 1.5 × 107,
dX = 1.3× 105, dZ = 1.6× 104, sX ≈ 10−4, sZ ≈ 10−3.

6 Conclusion

We have offered efficient optimization strategies to the problem of IV regression
for causal inference in a large-scale sparse setting. Our stochastic optimization
methods make it practically possible to train in the order of minutes causal
models when the number data points, covariates and instruments are all in the
order of millions.

References

Gujarati, D.N. and D.C. Porter (2009). Basic Econometrics. New York: McGraw-
Hill Irwin.

Hartford, Jason et al. (2017). “Deep IV: A Flexible Approach for Counterfac-
tual Prediction”. In: Proceedings of the 34th International Conference on
Machine Learning. Vol. 70. PMLR, pp. 1414–1423.

James, L.R. and B.K. Singh (1978). “An introduction to the logic, assumptions,
and basic analytic procedures of two-stage least squares”. In: Psychological
Bulletin 85.5, pp. 1104–1122.

Wright, P.G. (1928). The Tariff on Animal and Vegetable Oils.

8

	Introduction
	The 2SLS problem as a single optimization
	Stochastic gradient descent approach
	Faster sampling
	A further speedup
	Nonlinear and deep models
	Memory complexity of efficient sampling

	L-BFGS solution
	Experiments
	Conclusion

